Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 29, 2002 - Issue 3
183
Views
8
CrossRef citations to date
0
Altmetric
Articles

Effects of BOF top blowing and bottom stirring conditions on suppressing excessive oxidation

Pages 208-213 | Published online: 18 Jul 2013
 

Abstract

The effects of top blowing and bottom stirring conditions during steelmaking in a 6 t basic oxygen furnace (BOF) were investigated in studies with the aim of suppressing excessive oxidation. With low oxygen feed rate and high stirring energy, the apparent partial pressure of CO PCO was calculated from the equilibrium of carbon and oxygen in molten steel as being <1 atm. The relationship between top blowing/bottom stirring conditions and mass transfer at the slag/metal interface was analysed. It is proposed that mass transfer at the hot spot is significantly affected by the reaching rate of oxygen to the steel bath and bottom stirring. Mass transfer at the slag/metal interface, outside the hot spot, is sufficient to allow equilibrium to be attained in combined blowing BOF processes. Thus, the oxygen that is not consumed for decarburisation is distributed between steel and slag, i.e. deoxidation from steel to slag takes place, which makes it possible to obtain PCO <1 atm under atmospheric conditions. The decarburisation model developed based on the analysis reproduces the suppression of excessive oxidation under a decreased, top blown oxygen feed rate and is in good agreement with results from both 6 t BOF experiments and 350 t commercial BOF operation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.