Publication Cover
Redox Report
Communications in Free Radical Research
Volume 7, 2002 - Issue 2
65
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Low-density lipoprotein modification by normal, myeloperoxidase-deficient and NADPH oxidase-deficient granulocytes and the impact of redox active transition metal ions

, , , , &
Pages 111-119 | Published online: 19 Jul 2013
 

Abstract

The modification of low-density lipoprotein (LDL) by normal, myeloperoxidase (MPO)-deficient and NADPH oxidase-deficient granulocytes was investigated using the monoclonal antibody (mAb) OB/04, which was originally generated against copper-oxidized LDL. Incubation of LDL with normal granulocytes increased the reactivity of LDL with mAb OB/04. These effects were even more pronounced using MPO-deficient granulocytes. Inhibitors of oxidative reactions (the NADPH oxidase inhibitor diphenyleneiodonium chloride [DPI], catalase, superoxide dismutase [SOD]) did not significantly reduce LDL oxidation by normal granulocytes. Furthermore, granulocytes of a patient with NADPH oxidase deficiency were almost equally effective as normal granulocytes, indicating that oxidative burst-derived reactive oxygen species are of only minor importance in the generation of mAb OB/04-detectable new epitopes on LDL in vitro. In contrast, incubation of LDL with iron and copper prior to and during incubation with normal granulocytes markedly enhanced the generation of OB/04-detectable epitopes. It is supposed that, besides superoxide (in normal and MPO-deficient granulocytes) or instead of superoxide (in NADPH oxidase-deficient granulocytes), lytic enzymes released by activated granulocytes may enhance the availability of transition metals for oxidation of LDL. Our results support the concept that transition-metal-dependent pathways of LDL oxidation in combination with degranulation products of granulocytes are important.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.