Publication Cover
Redox Report
Communications in Free Radical Research
Volume 13, 2008 - Issue 5
399
Views
28
CrossRef citations to date
0
Altmetric
Research Articles

Use of liposomes as membrane models to evaluate the contribution of drug–membrane interactions to antioxidant properties of etodolac

, , &
Pages 225-236 | Published online: 19 Jul 2013
 

Abstract

This work stresses the need to combine antioxidant assays and drug–membrane interaction studies to describe more accurately the antioxidant profile of non-steroidal anti-inflammatory drugs (NSAIDs). Different experiments performed in liposomes and aqueous solution were compared and used to evaluate the protective effect of etodolac in lipid peroxidation. Lipid peroxidation was induced by the peroxyl radical (ROO•) derived from 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) and hydroxyl radical (HO•) generated by the Fenton reaction and was assessed by the fluorescence intensity decay of three fluorescence probes with distinct lipophilic properties – fluorescein; hexadecanoyl aminofluorescein (HDAF) and diphenylhexatriene propionic acid (DPHPA). Membrane fluidity changes due to lipid peroxidation were also evaluated by steady-state anisotropy measurements. Interactions of etodolac with lipid bilayers were evaluated by membrane zeta-potential measurements. Results indicate a drug location near the membrane surface and show that etodolac can scavenge the radicals studied but to a variable extent, depending on the assayed media and reactive species. The use of different probes and liposomes as membrane mimetic systems allowed us to conclude that membrane lipoperoxidation is not only related to the scavenging characteristics of the antioxidants, but also to their ability to interact with lipid bilayers.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.