200
Views
29
CrossRef citations to date
0
Altmetric
Articles

Weldability of 1.6 mm thick aluminium alloy 5182 sheet by single and dual beam Nd: YAG laser welding

Pages 246-256 | Published online: 04 Dec 2013
 

Abstract

The weldability of 1.6 mm thick 5182 Al–Mg alloy sheet by the single- and dual-beam Nd:YAG laser welding processes has been examined. Bead-on-plate welds were made using total laser powers from 2.5 to 6 kW, dual-beam lead/lag laser beam power ratios ranging from 3:2 to 2:3 and travel speeds from 4 to 15 m min-1. The effects of focal position and shielding gas conditions on weld quality were also investigated. Whereas full penetration laser welds could be made using the 3 kW single-beam laser welder at speeds up to 15 m min-1, the underbead surface was always very rough with undercutting and numerous projections or spikes of solidified ejected metal. This 'spikey' underbead surface geometry was attributed to the effects of the high vapour pressure Mg in the alloy on the keyhole dynamics. The undesirable 'spikey' underbead geometry was unaffected by changes in focal position, shielding gas parameters or other single-beam welding process parameters. Most full penetration dual-beam laser welds exhibited either blow-through porosity at low welding speeds (4–6 m min-1) or unacceptable 'spikey' underbead surface quality at increased welding speeds up to 13.5 m min-1. Radiography revealed significant occluded porosity within borderline or partial penetration welds. This was thought to be caused by significant keyhole instability that exists under these welding conditions. A limited range of dual-beam laser process conditions was found that produced sound, pore-free laser welds with good top and underbead surface quality. Acceptable welds were produced at welding speeds of 6 to 7.5 m min-1 using total laser powers of 4.5–5 kW, but only when the lead laser beam power was greater than or equal to the lagging beam power. The improved underbead quality was attributed to the effect of the second lagging laser beam on keyhole stability, venting of the high vapour pressure Mg from the keyhole and solidification of the underbead weld metal during full penetration dual-beam laser welding.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.