361
Views
80
CrossRef citations to date
0
Altmetric
Articles

Effect of reduced or zero pin length and anvil insulation on friction stir spot welding thin gauge 6111 automotive sheet

&
Pages 443-456 | Published online: 04 Dec 2013
 

Abstract

Friction stir spot welding (FSSW) is a relatively new process, which has not yet been fully optimised. The aim of the work presented was to investigate the influence of pin length and an insulating anvil on FSSW thin (0·9 mm) 6111-T4 aluminium automotive closure panels. A pinless, or 'zero pin length', tool was also tested. With a normal pin tool and a steel anvil the optimum pin length was found to be considerably shorter than conventionally used, being in the range 0·7–1 mm, as opposed to ∼1·4 mm. The insulated anvil increased the peak temperature in the bottom sheet by 45°C, but there was a 15% reduction in lap shear strength when used with a conventional pin tool. In the case of the pinless tool, successful welds were produced with comparable strengths to the highest values measured with the optimum conventional tool without a retained weld keyhole or top sheet thinning (hooking).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.