86
Views
9
CrossRef citations to date
0
Altmetric
Articles

Influence of compositional variations on microstructural evolution, mechanical properties and fluidity of secondary foundry alloy AlSi9Cu3

, , , &
Pages 375-383 | Published online: 29 Nov 2013
 

Abstract

The combined effect of the main alloying elements on the mechanical properties and fluidity of the secondary foundry alloy AlSi9Cu3 has been investigated. Systematic compositional variations within the alloy's tolerance limit illustrate the broad spectrum of attainable properties. The yield strength in the as cast condition can be adjusted from 100 to 200 MPa, while the elongation to fracture can be simultaneously varied between 0·35% and almost 4%. Additionally, variation in fluidity by more than 100% can be achieved. The microstructure–property relationship is interpreted in the light of thermodynamic calculations that reveal a significant mutual interaction of the alloying elements.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.