37
Views
9
CrossRef citations to date
0
Altmetric
Articles

Determination of optimal experimental parameters for transient thermography imaging using finite-element models

Pages 20-26 | Published online: 18 Jul 2013
 

Abstract

A study was conducted to determine the optimal inspection parameters such as range and time for finding defects in carbon/epoxy composite panels using IR thermography imaging. The present paper presents an innovative method for automatically selecting these parameters for evaluating composites based on a series of finite-element models. Such finite-element models of composite panels with flaws at different depth locations were constructed a priori and analysed to estimate the optimal operating parameters. The optimal inspection range and time were identified in the contour plots obtained from the appropriate finite-element analysis results. A graphite–epoxy composite panel with phantom defects at various depth locations was built, and experiments were performed using a thermographic system to verify and validate the proposed method.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.