70
Views
36
CrossRef citations to date
0
Altmetric
Articles

Multilevel adaptive thresholding and shrinkage technique for denoising using Daubechies complex wavelet transform

, , &
Pages 340-358 | Published online: 18 Jul 2013
 

Abstract

In this paper, we have proposed a multilevel soft thresholding technique for noise removal in Daubechies complex wavelet transform domain. Two useful properties of Daubechies complex wavelet transform, approximate shift invariance and strong edge representation, have been explored. Most of the uncorrelated noise gets removed by shrinking complex wavelet coefficients at the lowest level, while correlated noise gets removed by only a fraction at lower levels, so we used multilevel thresholding and shrinkage on complex wavelet coefficients. The proposed method firstly detects strong edges using imaginary components of complex coefficients and then applies multilevel thresholding and shrinkage on complex wavelet coefficients in the wavelet domain at non-edge points. The proposed threshold depends on the variance of wavelet coefficients, the mean and the median of absolute wavelet coefficients at a particular level. Dependence of these parameters makes this method adaptive in nature. Results obtained for one-dimensional signals and two-dimensional images demonstrate an improved denoising performance over other related methods available in the literature.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.