197
Views
1
CrossRef citations to date
0
Altmetric
Research Papers

A simulation of the fatigue life of light aircraft glass fibre-reinforced composites landing gear

&
Pages S9-142-S9-147 | Received 11 Oct 2014, Accepted 27 Nov 2014, Published online: 23 Nov 2015
 

Abstract

This study uses finite element analysis software to conduct simulations and compares the fatigue behaviour of the aluminium alloy and glass fibre-reinforced composite that is used in light aircraft landing gear. The maximum stress, maximum strain and deformation of landing gear of different shapes (plate and tube shapes) are also determined. The results show that the composite landing gear weighs 45% less than an aluminium equivalent. Of the samples tested, plate-shaped glass fibre-reinforced composite landing gear exhibits the lowest maximum stress under a static load. Regardless of whether the landing gear is plate- or tube-shaped, the maximum strain and deformation for the composite landing gear are more than four times those for the aluminium alloy landing gear. The results for dynamic load show that plate-shaped glass fibre-reinforced composite and tube-shaped aluminium landing gear have similar maximum alternating stress under cyclic loading.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.