Publication Cover
Neurological Research
A Journal of Progress in Neurosurgery, Neurology and Neurosciences
Volume 34, 2012 - Issue 4: Further Understanding of Stroke
1,463
Views
78
CrossRef citations to date
0
Altmetric
Original Article

Activation of Akt/GSK-3beta/beta-catenin signaling pathway is involved in survival of neurons after traumatic brain injury in rats

, , , , &
Pages 400-407 | Published online: 12 Nov 2013
 

Abstract

Objective: Apoptotic cell death is an important factor influencing the prognosis after traumatic brain injury (TBI). Akt/GSK-3beta/beta-catenin signaling plays a critical role in the apoptosis of neurons in several models of neurodegeneration. The goal of this study was to determine if the mechanism of cell survival mediated by the Akt/GSK-3beta/beta-catenin pathway is involved in a rat model of TBI.

Methods: TBI was performed by a controlled cortical impact device. Expression of Akt, phospho-Akt, GSK-3beta, phospho-GSK-3beta, beta-catenin, phospho-beta-catenin were examined by immunohistochemistry and Western blot analysis. Double immunofluorenscent staining was used to observe the neuronal expression of the aforementioned subtrates. Terminal deoxynucleotidyl transferase-mediated uridine 5’-triphosphate-biotin nick end-labeling (TUNEL) staining was performed to identify apoptosis.

Results: Western blot analysis showed that phospho-Akt significantly increased at 4 hours post-TBI, but decreased after 72 hours post-TBI. Phospho-GSK-3beta – phosphorylated by phospho-Akt – slightly increased at 4 hours post-TBI and peaked at 72 hours post-TBI. These changes in Phospho-GSK-3beta expression were accompanied by a marked increase in expression of phospho-beta-catenin at 4 hours post-TBI which was sustained until 7 days post-TBI. Double staining of phospho-Akt and NeuN revealed the colocalization of phospho-Akt positive cells and neuronal cells. In addition, double staining of phospho-Akt and TUNEL showed no colocalization of phospho-Akt cells and TUNEL-positive cells.

Conclusion: Phosphorylation of Akt (Ser473) and GSK3beta (Ser9) was accelerated in the injured cortex, and involved in the neuronal survival after TBI. Moreover, neuroprotection of beta-catenin against ischemia was partly mediated by enhanced and persistent activation of the Akt/GSK3beta signaling pathway.

This project was supported by the Natural Science Foundation of China (Grant No. 81000504).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.