Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 32, 2005 - Issue 5
75
Views
19
CrossRef citations to date
0
Altmetric
Articles

Steel annealing furnace robust neural network model

Pages 418-426 | Published online: 18 Jul 2013
 

Abstract

In this day and age, galvanised coated steel is an essential product in several key manufacturing sectors because of its anticorrosive properties. The increase in demand has led managers to improve the different phases in their production chains. Among the efforts needed to accomplish this task, process modelling can be identified as the one with the most powerful outputs in spite of its non-trivial development. In many fields, such as industrial modelling, multilayer feedforward neural networks are often proposed as universal function approximators. These supervised neural networks are commonly trained by the traditional, back-propagation learning format, which minimises the mean squared error (mse) of the training data. However, in the presence of corrupted or extremely deviated samples (outliers), this training scheme may produce incorrect models, and it is well known that industrial data sets frequently contain outliers. The process modelled is a steel coil annealing furnace in a galvanising line, which shares characteristics with most of the furnaces used in galvanised lines all over the world. This paper reports the effectiveness of robust learning algorithms compared to the classical mse-based learning algorithm for the modelling of a real industry process. From this model an adequate line velocity (the velocity set point) for a coil, depending on its characteristics and the furnace condition to receive this coil (temperature set points), can be obtained. With this set point generation model the operator could set strategies to manage the line, i.e. set the order of the coil to be treated or preview the line's speed conditions for the transitory situations.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.