Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 32, 2005 - Issue 5
182
Views
31
CrossRef citations to date
0
Altmetric
Articles

Mathematical modelling of molten steel flow in a whole degasser during RH refining process

Pages 427-434 | Published online: 18 Jul 2013
 

Abstract

A three-dimensional mathematical model for molten steel flow in a whole degasser during the RH (Ruhrstahl–Heraeus) refining process is proposed. The model has been developed considering the physical characteristics of the process, particularly the behaviour of gas–liquid two phase flow in the up snorkel and the momentum exchange between the two phases. The fluid flow fields and gas holdups of liquid phases, among other parameters, in a 90 t RH degasser and a water model unit of one-fifth linear scale have been computed using this mathematical model. The results show that the flow pattern of molten steel in a whole RH degasser can be well represented by the mathematical model. Apart from the area close to the free surface and the zone between the two snorkels in the ladle, the molten steel in an RH degasser, especially in the vacuum vessel, is reasonably fully mixed during the refining process. However, there is a boundary layer between the descending liquid stream from the down snorkel and the surrounding liquid, which is typical liquid–liquid two phase flow, and the molten steel in the ladle is not perfectly mixed. The blown lifting gas ascends mostly near the up snorkel wall, which is more obvious under the conditions of an actual RH degasser, and the flow pattern of bubbles and molten steel in the up snorkel is closer to annular flow. Calculated circulation rates for the water model unit at various lifting gas rates are in good agreement with values determined by means of water modelling experiments.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.