Publication Cover
Ironmaking & Steelmaking
Processes, Products and Applications
Volume 41, 2014 - Issue 1
311
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Overall models based on ensemble methods for predicting continuous annealing furnace temperature settings

, , &
Pages 51-60 | Received 19 Oct 2012, Accepted 08 Jan 2013, Published online: 06 Dec 2013
 

Abstract

The prediction of the set points for continuous annealing furnaces on hot dip galvanising lines is essential if high product quality is to be maintained and energy consumption and related emissions into the atmosphere are to be reduced. Owing to the global and evolving nature of the galvanising industry, plant engineers are currently demanding better overall prediction models that maintain accuracy while working with continual changes in the production cycle. This paper presents three promising prediction models based on ensemble methods (additive regression, bagging and dagging) and compares them with models based on artificial intelligence to highlight how good ensembles are at creating overall models with lower generalisation errors. The models are trained using coil properties, chemical compositions of the steel and historical data from a galvanising process operating in Spain. The results show that the potential benefits from such ensemble models, once configured properly, include high performance in terms of both prediction and generalisation capacity, as well as reliability in prediction and a significant reduction in the difficulty of setting up the model.

Acknowledgements

The authors are grateful for financial support provided by the European Union via project no. RFS-PR-06035, by the University of La Rioja via grant FPI-2012 and for support provided by the Autonomous Government of La Rioja under its 3er Plan Riojano de I+D+I via project FOMENTA 2010/13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.