154
Views
17
CrossRef citations to date
0
Altmetric
Articles

Effect of tin on melting temperature and microstructure of Ag–Cu–Zn–Sn filler metals

Pages 1318-1322 | Published online: 19 Jul 2013
 

Abstract

To develop low melting point filler metals for brazing TiNi shape memory alloy (SMA) and stainless steel (SS), a series of Ag–22Cu–Zn–Sn (wt-%) filler metals have been studied. Using differential thermal analysis (DTA) analysis, the melting temperatures of Ag–22Cu–Zn–Sn filler metals were determined. The results show that the increase of zinc and tin contents drastically decreases the solidus and liquidus temperatures of the Ag–22Cu–Zn–Sn filler metals and the melting temperatures of the Ag–22Cu–18Zn–Sn filler metals with 5–8 wt-%tin are < 650°C. Metallographic observations indicate that the increase of zinc and tin in the Ag–22Cu–Zn–Sn filler metals helps the formation of eutectic structure and inhibits the formation of α-Ag and α-Cu solid solutions, but the increase of tin also causes the formation of Ag3Sn and Cu41Sn11 brittle compounds. The results of mechanical property tests of the laser brazed joints of TiNi SMA and SS show that the proper increase of zinc and tin in Ag–22Cu–Zn–Sn filler metals is favourable for improving the strength of the laser brazed joints of TiNi SMA and SS.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.