535
Views
39
CrossRef citations to date
0
Altmetric
Articles

Tensile properties of partially austenitised and austempered ductile irons with dual matrix structures

Pages 919-928 | Published online: 19 Jul 2013
 

Abstract

In the present study, an unalloyed ductile iron containing Fe–3·50C–2·63Si–0·318Mn–0.047Mg (wt-%) were intercritically austenitised (partially austenitised) in two phase region α+γ at various temperatures of 795, 805, 815 and 830°C for 20 min and then quenched into salt bath held at austempering temperature of 365°C for various times to obtain different ausferrite volume fractions (AFVFs). Results showed that dual matrix structure containing proeutectoid ferrite, new ferrite (also called epitaxial ferrite) and ausferrite (bainitic ferrite+high carbon austenite, which is retained or stabilised austenite) has been developed. Within each of the austempered series in α+γ temperature range, new ferrite volume fraction increased with increasing intercritical austenitising temperature (ICAT). Although, transforming percentage of new ferrite from parent austenite present at ICAT increased with decreasing ICAT. Some specimens were also conventionally austempered from 900°C for comparison. The new ferrite was absent in these samples. The volume fraction of proeutectoid ferrite, new ferrite and ausferrite can be controlled to determine the strength and ductility. Austempered specimens in α+γ temperature range exhibited much greater ductility than conventionally austempered ones. The tensile strength increased while ductility decreased with increasing AFVF. On the other hand, the ductility increased with increasing proeutectoid ferrite and new ferrite volume fractions at the expense of strength. The specimen with ∼47·2%AFVF exhibited the best combination of high strength and ductility. The strength and ductility of this material is much higher than that of ferritic grades. Its strength is at the same level as while ductility almost more than four times higher than that of pearlitic grades. Meanwhile, the specimen with ∼ 75%AFVF exhibited the best combination of high strength and ductility compared with those of pearlitic grades. The strength of this material is much higher and its ductility is almost more than two times higher than that of pearlitic grades yet slightly lower than that of ferritic grades. This material also meets the requirements for the strength of quenched and tempered grades and its ductility is higher than that of this grade.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.