87
Views
4
CrossRef citations to date
0
Altmetric
Original Article

Microstructure and friction performance of copper film fabricated by ion implantation assisted electroless plating on PTFE

, , &
Pages 1680-1685 | Received 29 Jul 2010, Accepted 06 Nov 2010, Published online: 12 Nov 2013
 

Abstract

The polytetrafluoroethylene (PTFE), which was implanted with Ni ion to different energy and doses, fabricated metallic structures by selective electroless copper plating. The characteristic and microstructure of the copper film were studied using SEM and X-ray diffraction. Friction performance of the interface between copper film and basal body of PTFE was tested with a CETR UMT-2 (CETR Co., Campbell, CA, USA) multifunction micromechanics instrument. The test loads were 10, 20 and 40 N, while the line velocity was 8 mm s−1, and the frequency of data acquisition was 1 Hz. The Ni ion implantation replaces the complicated electroless plating surface pretreatment, and it is an assisted technique of electroless plating of copper on the surface of PTFE and plate Cu directly on its surface. Continuous, prepressing and uniformity plating was obtained with proper technique parameters and the dosage of Ni+. The frictional performance comprehensive property of copper film was remarkably influenced by different plating methods, annealing treatment and testing loads under unlubricated condition. The friction coefficients and wear rates changed with the varied load. Annealing treatment improves the tightness and uniformity of the copper film, while it decreases its cavity. Friction performance of copper film was thus increased. The mechanisms of friction and wear of copper film under different test conditions are also discussed.

This work was supported by the Natural Science Foundation of Jiangsu Province (grant no. BK2009661), Jiangsu Provincial Department of Education (grant no. 09KJD430003), The Fundamental Research Funds for the Central Universities (grant no. 2010QNA07) and Huaian Science and Technology Pillar Program (grant no. HAG09044).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.