913
Views
42
CrossRef citations to date
0
Altmetric
Original Article

Austenite grain growth prediction coupling with drag and pinning effects in low carbon Nb microalloyed steels

, , &
Pages 996-1001 | Received 31 Aug 2010, Accepted 04 Jan 2011, Published online: 12 Nov 2013
 

Abstract

A metallurgical model has been developed to predict the austenite grain growth in Nb microalloyed steels. The mutual effects of Nb(CN) particle pinning and Nb solute drag on grain growth kinetics are studied. The particle dissolution, the undissolved particle coarsening and the changes in Nb solute in solution during reheating or isothermal heat treatment process are taken into account in the model. It is shown that, besides the pinning exerted by the NbC precipitates, the solute drag of Nb in solid solution plays an important role in the inhibition of austenite grain growth in Nb microalloyed steels. The Nb solute drag effect on grain growth decreases with increasing temperature because the grain boundary can gradually break away from the solute atmosphere in the higher velocity region at high temperature. The mean austenite grain size sluggishly increases with temperature in the low temperature region, while it significantly increases in the relative high temperature region. The predicted austenite grain size concerning the combined effect of Nb drag and Nb(CN) pinning is in good agreement with the experimental results from the literature.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.