141
Views
7
CrossRef citations to date
0
Altmetric
Original Article

Monte Carlo simulation of influence of reheat temperature on austenite grain growth in C–Mn steel

, , &
Pages 711-718 | Received 01 Dec 2011, Accepted 22 Dec 2011, Published online: 12 Nov 2013
 

Abstract

The evolution and topology of a two-dimensional austenite grain growth of C–Mn steel are simulated by the Monte Carlo (MC) model during the reheating process. Simulated microstructural maps have been generated in a square lattice (400×400) at various MC steps and temperatures. Normalised grain size distribution has also been computed at different reheating temperatures, assuming a uniform temperature distribution in the slab. Two important model parameters, namely, the grain growth exponent and the model constant, have been estimated to predict the average grain size. The activation energy for grain growth has been calculated using the Arrhenius relationship. The grain growth behaviour as a function of both MC and physical time has been computed, and the effect of temperature on the rate of growth has been analysed. The predicted temporal evolutions of grain growth and model parameters have been validated with the published literature and found to be in good agreement.

The authors would like to express their sincere gratitude to the Director, NML, and Dr I. Cattoraj of NML Jamshedpur for their support and constructive suggestions.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.