360
Views
8
CrossRef citations to date
0
Altmetric
Special Issue Articles

Micro- and macro-creep damage formation for P92 under multiaxial stress related to circular notched specimen

, , &
Pages 43-49 | Received 13 Feb 2013, Accepted 22 May 2013, Published online: 06 Dec 2013
 

Abstract

In this study, to clarify the behaviour of micro- and macro-creep damage progression for P92 under multiaxial stress field, interrupted creep tests, analysis of multiaxial stress and detailed the cross-sectional observations were conducted on a circular notched round bar specimen which produces the multiaxial stress field due to the plastic constraint. As a result, creep voids were initiated at the early stage and they were formed up to the final fracture. These phenomena were found to be detected using direct current potential drop (DCPD) method. These results concern the development of the measurement of creep crack initiation. The distribution of high void area fraction was in good agreement with that of high hydrostatic stress and high multiaxial stress. This result indicates that multiaxial stress affects the void formation. Furthermore, the micro-creep damage of each interrupted specimen was evaluated by using the electron backscatter diffraction (EBSD) method which can analyse crystallographic misorientation caused by creep strain. The results of EBSD analyses indicated that the value of grain reference orientation deviation (GROD) closely concerns the void initiation.

This work was partly supported by the Japan Society for the Promotion of Science Research Fellow 24·2235.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.