984
Views
36
CrossRef citations to date
0
Altmetric
Review

Grain growth and stabilisation of nanostructured aluminium at high temperatures: review

&
Pages 1016-1034 | Received 22 Oct 2014, Accepted 22 Oct 2014, Published online: 04 Nov 2014
 

Abstract

Nanostructured (NS) materials have a large stored energy due to their large grain boundary area and thus tend to be unstable with respect to grain growth during high temperature annealing or deformation. This problem can limit the application of NS materials at high temperatures (>0·5Tm, absolute melting temperature), especially Al alloys owing to their low melting points. Restoration processes and grain growth in NS Al based materials are critically reviewed, with emphasis on nanostructure grain stabilisation at high temperatures. The mechanisms of normal and abnormal grain growth during isothermal annealing are presented, followed by consideration of thermal stabilisation by the addition of solute atoms/impurities and/or dispersion of second phase particles. Grain growth is significantly facilitated by applying deformation at elevated temperatures during preparation or further processing of semifinished NS materials. The dynamic restoration processes, dynamic grain growth and dynamic particle coarsening are addressed in NS Al. Finally, grain growth during consolidation of nanocrystalline powders (one of the principal methods to fabricate bulk NS Al) is presented, and the effects of processing parameters on grain size stabilisation are discussed.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.