73
Views
5
CrossRef citations to date
0
Altmetric
Original Article

BEM analysis of inter-fibre failure under compression in composites: comparison between carbon and glass fibre systems

, &
Pages 333-341 | Received 15 Sep 2010, Accepted 04 Oct 2010, Published online: 12 Nov 2013
 

Abstract

The heterogeneous character of fibrous composite materials implies mechanisms of damage that are frequently associated, at least at the micromechanical level, with the generation of interface cracks and, thus, with interfacial fracture mechanics. The particular case of matrix/interfibre failure, typically appearing in impact problems and in cross-ply laminates, and caused by a dominant traction acting transversely to the fibres, is directly associated to the appearance and growth of cracks at the fibre/matrix interfaces that eventually lead to macrofailure. The present work studies the evolution of this mechanism of damage under compression and compares the results obtained for two different bimaterial systems: glass fibre–epoxy matrix and carbon fibre–epoxy matrix. To this end, a boundary element model of a single fibre cell is performed, and its results are analysed using the concepts derived from interfacial fracture mechanics. The conclusions obtained establish the morphological differences existing in the generation of this mechanism for both material systems, supporting the idea of a weak dependence of the development of the interfibre failure under compression on fibre elastic properties.

The work was supported by the Spanish Ministry of Education and Science (project TRA2005-06764, TRA2006 08077 and MAT2009-14022) and Junta de Andalucía (project of excellence TEP-02045 and TEP-04501). The authors thank Dr E. Graciani (University of Seville), whose BEM code has been used.

Notes

This paper is part of a special issue on Latest developments in research on composite materials

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.