51
Views
10
CrossRef citations to date
0
Altmetric
Articles

Nanocrystalline and amorphous structure formation in Ti–Al system during high energy ball milling

Pages 354-357 | Published online: 19 Jul 2013
 

Abstract

The aim of the present work was to study the structural evolution of Ti–48Al (at.-%) powder blend during mechanical alloying. Because milling parameters play a vital role in achieving the desired structure/phase, milling was carried out with optimised parameters. Both powder handling and milling operations were performed under high pure argon atmosphere to prevent oxidation of the powder blend. Mechanically alloyed powder blend was then characterised by scanning electron microscope (SEM), X-ray diffraction (XRD) and differential thermal analyzer (DTA). Mechanical alloying induced severe plastic deformation resulting in cold welding, powder particle refinement and narrowing of powder particle size distribution as is evidenced from SEM micrographs. XRD analysis indicated complete dissolution of aluminium in titanium at 20 h of milling and achieving nanostructure before amorphous phase formation. DTA scan indicated the disappearance of one of the exothermic peaks, and a gradual drop in crystallisation temperature with increasing milling time.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.