139
Views
35
CrossRef citations to date
0
Altmetric
Articles

Effect of reinforcement volume fraction on mechanical alloying of Al–SiC nanocomposite powders

Pages 276-282 | Published online: 19 Jul 2013
 

Abstract

Mixtures of aluminium powder and nanoscaled SiC particles (n-SiC) at various volume fractions of 0, 1, 3, 5, 7 and 10 are comilled in a high energy planetary ball mill under an argon atmosphere to produce nanocrystalline Al–SiC nanocomposites. High resolution scanning electron microscopy (HRSEM), X-ray diffraction (XRD) method, laser particle size analysis and powder density measurement were used to study the morphological changes and microstructural evolution occurred during mechanical alloying. Al–SiC composite powder with microscaled SiC particles (1 m m) was also synthesised and characterised to examine the influence of reinforcement particle size on the milling process. It was found that with increasing volume fraction of n-SiC, a finer composite powder with more uniform particle size distribution is obtained. The morphology of the particles also became more equiaxed at shorter milling times. Furthermore, the analysis of XRD patterns by Williamson–Hall method indicated that the crystallite size of the aluminium matrix decreases with increasing reinforcement volume content while the lattice strain changes marginally. As compared with microscaled SiC particles, it appeared that the effect of n-SiC on the milling stages is more pronounced. The results clearly show that the reinforcement particles influence the work hardening and fracture of the metal matrix upon milling, affecting the structural evolution. With decreasing size of the ceramic particles to nanoscale, this influence becomes more pronounced as the surface to volume fraction increases.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.