64
Views
7
CrossRef citations to date
0
Altmetric
Original Article

Fabrication of ultrafine and nanocrystalline WC–Co mixtures by planetary milling and subsequent consolidations

, , &
Pages 214-221 | Received 12 Mar 2009, Accepted 25 Apr 2009, Published online: 12 Nov 2013
 

Abstract

In this work ultrafine and nanocrystalline WC–Co mixtures were obtained by low energy milling in planetary ball mill. The effect of the processing conditions on the reduction and distribution of the grain sizes and the internal strains level were studied. The characterisation of the powder mixtures was performed by means of scanning and transmission electron microscopy and X-ray diffraction analysis. Observations through SEM and TEM images showed a particle size below 100 nm, after milling. The X-ray diffraction profile analysis revealed a WC phase refined to a crystallite size of 19 nm.

The mixtures obtained have been consolidated and mechanical and microstructurally characterised. The results show improvements in resistant behaviour of the material consolidated from nanocrystalline powders, in spite of the grain growth experienced during the sintering. The best results were found for the material obtained by wet milling during 100 h, which presents values of hardness higher than 1800 HV.

This work has been supported by CICYT, Spain, through project no. MAT2006-12945-C03-02.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.