95
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Finite element investigation of backbone binder removal from MIM copper compact

, , , , &
Pages 333-339 | Received 09 Jan 2012, Accepted 26 Feb 2012, Published online: 12 Nov 2013
 

Abstract

Finite element (FE) model based on kinetic analysis was developed to describe the thermal debinding process of previously solvent debinded metal injection moulded (MIM) copper compacts. Thermophysical properties (specific heat, density, thermal diffusivity and thermal conductivity as a function of temperature) of MIM copper compact were measured using differential scanning calorimeter, laser flash analyser, thermogravimetry analyser and pushrod dilatometer. The proposed model is solved numerically to study binder removal and binder distribution during thermal debinding. The investigations included the analysis of residual (backbone) binder content for cylindrical MIM copper compacts at different temperatures and positions. The FE calculations are strongly based on measured thermophysical data and kinetic analysis of copper system. The FE simulated and experimental results were compared to validate the underlying FE model based on FE temperature field calculations. Drawing the real furnace temperature conditions in finite calculation can result in obtaining more accurate data.

This work was carried out within the project ‘TPM PIM’ in the Austrian Institute of Technology (AIT) Vienna. The first author is also thankful to the Government of Pakistan for providing financial assistance for PhD studies.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.