310
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Microstructure and improved hydrogen storage properties of Mg based alloy powders prepared by modified milling method

, , , , &
Pages 45-53 | Received 24 Apr 2013, Accepted 11 Aug 2013, Published online: 06 Dec 2013
 

Abstract

In this study, the modified preparation method of combining planetary and vibratory ball milling was proposed to prepare Mg based hydrogen storage alloy powders. The comparison of micromorphology and hydrogen storage behaviour between Mg2Ni prepared using the modified and conventional preparation methods were investigated experimentally. The comparison results showed that the combination of first planetary and then vibratory ball milling has more favourable effect on improving both the kinetics and the thermodynamics of ball milled Mg2Ni alloys. The sample synthesised by first planetary milling for 40 h and then vibratory milling for 30 h has faster hydrogen absorption kinetics and lower dehydriding onset temperature than those prepared by the single method of planetary or vibratory milling and hydriding combustion synthesis owing to its popcorn-like microstructure. Moreover, this kind of modified method reduces the reaction enthalpy and activation energy by up to ∼18 and 22% respectively.

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (grant no. 51106118 and 21276209) and the Specialized Research Fund for the Doctoral Programme of Higher Education of China (grant no. 20100201110007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.