162
Views
34
CrossRef citations to date
0
Altmetric
Articles

Numerical simulation of welding-induced distortion in thin-walled structures

Pages 528-536 | Published online: 04 Dec 2013
 

Abstract

A sequentially coupled thermal stress analysis approach is presented for modelling temperature and distortion profiles resulting from welding thin-walled structures. The material is modelled as thermo-elastic–plastic with isotropic strain hardening. The heat source is modelled as a three-dimensional (3-D) double ellipsoid, and 3-D finite element (FE) models are employed for predicting ensuing distortions. Comparisons between the simulation results and experiments performed for eight weld configurations are presented. The weld configurations include bead-on-plate, butt weld and tee joint welds with varying plate thicknesses. Temperature measurements using thermocouples and an infrared (IR) imaging radiometer are directly compared to the thermal simulations. Likewise, distortions measured directly on the experimental set-ups are compared to the FE distortion predictions. Very good correlation is obtained for temperature as well as distortion predictions between experimental and proposed numerical approaches. Lastly, details of a weld simulation for the rear section of a motorcycle frame are presented.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.