218
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Euler based finite element analysis on high velocity impact behaviour in cold spraying

, &
Pages 309-315 | Received 01 Nov 2013, Accepted 20 Dec 2013, Published online: 17 Jan 2014
 

Abstract

Finite element analysis on the high velocity impact behaviour in cold spraying is conducted using the Euler method. The simulation results demonstrate that the Euler method is capable of realising the reliable simulation on some complicated impact processes. The comparative deformation ratio (CDR) is proposed, which is defined as the ratio of dimensionless crater depth to compressional ratio, to evaluate the comparative deformation degree between the particle and substrate. Proper CDR and sufficiently large compressional ratio can ensure the well bonding between the particle and substrate. Furthermore, for the multiparticle impact process, it is found that, after the deposition of the first layer coating, the subsequent impact process can be considered as particles impacting on the same material no matter what substrate is coated. When the velocity is increased to a hypervelocity (erosion velocity), extreme erosion occurs in the substrate or the formed coatings, resulting in the poor performance of the coating.

Acknowledgement

The authors would like to acknowledge the support by Marie Curie FP7-IPACT-268696 (EU).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.