Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 107, 2008 - Issue 6
36
Views
0
CrossRef citations to date
0
Altmetric
Articles

Influence of fluorine source and TiO2 on glass ceramics based on red clay and magnesite

&
Pages 337-343 | Published online: 18 Jul 2013
 

Abstract

Within the Fe2O3–BaO–Al2O3–SiO2 glass system, the influence of different fluorine source and TiO2 on the crystallisation behaviour and thermal expansion characteristics has been investigated. These aluminosilicate glasses, with different nucleation catalysts (TiO2, AlF3 and NH4F), were successfully prepared from Saudi Arabia raw materials (red clay and magnesite). Thermal behaviour, crystalline phases, microstructures, and thermal expansion coefficient were studied by DTA, XRD, SEM techniques, as well as a dilatometer. Spinel, hexacelsian, monocelsian, kinoshitalite, and Ba-osumilite were developed in glass ceramic samples. Spinel was the early phase formed in all glasses; however, with increasing temperature, hexacelsian and kinoshitalite were developed in fluorine free glasses and fluorine containing glasses respectively. Ba-osumilite was developed and hexacelsian was converted into monocelsian during lengthy heat treatment at 1150°C. A bulk crystalline microstructure was obtained; however, a microscale structure was observed in fluorine free samples and a homogeneous nanoscale microstructure was developed in fluorine containing samples. The coefficient of thermal expansion (CTE) varied according to the phases and the heat treatment parameters. Development of spinel, hexacelsian and kinoshitalite in glass ceramic samples gave CTE values between 86·44 × 10−7 and 52·53 × 10−7°C−1, whereas crystallisation of Ba-osumilite and monocelsian gave CTE values between 51·29 × 10−7 and −7·35 × 10−7°C−1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.