Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 110, 2011 - Issue 5
1,813
Views
87
CrossRef citations to date
0
Altmetric
DAVIDGE AWARD 2010 REVIEW

PTCR effect in donor doped barium titanate: review of compositions, microstructures, processing and properties

&
Pages 257-269 | Received 23 Oct 2010, Accepted 15 Jan 2011, Published online: 22 Nov 2013
 

Abstract

Abstract

Barium titanate is widely used in the fabrication of thermistors with a positive temperature coefficient of resistivity (PTCR). The resistivity can increase by several orders of magnitude near the phase transition temperature Tc for the ferroelectric tetragonal to the paraelectric cubic phase transformation. There is general agreement that the anomaly in the change of electrical resistivity of donor doped BaTiO3 around Tc is due to the grain boundary effect. The Heywang–Jonker model and other mechanisms involving the nature of the electrical barrier formed across the grain boundaries of polycrystalline BaTiO3 are reviewed. The compositional effect on BaTiO3 based PTCR properties is listed and discussed. The influences of manufacturing methods under different stages including the initial doping methods, sample forming methods and final heat treatments on PTCR properties are compared. The complex interrelationships between compositions, microstructures, processing and PTCR characteristics are well discussed.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.