21
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Finite element mesh design of a cylindrical cask under puncture drop test conditions

, &
Pages 112-116 | Received 23 Sep 2010, Accepted 11 Apr 2011, Published online: 12 Nov 2013
 

Abstract

Transport casks for radioactive materials have to withstand the 9 m drop test, 1 m puncture drop test and dynamic crush test with regard to the mechanical requirements according to the IAEA regulations. The safety assessment of the package can be carried out on the basis of experimental investigations with prototypes or models of appropriate scale, calculations, by reference to previous satisfactory safety demonstrations of a sufficiently similar nature or a combination of these methods. Computational methods are increasingly used for the assessment of mechanical test scenarios. However, it must be guaranteed that the calculation methods provide reliable results. Important quality assurance measures at the Federal Institute for Materials Research and Testing are given concerning the preparation, run and evaluation of a numerical analysis with reference to the appropriate guidelines. Hence, a successful application of the finite element (FE) method requires a suitable mesh. An analysis of the 1 m puncture drop test using successively refined FE meshes was performed to find an acceptable mesh size and to study the mesh convergence using explicit dynamic FE codes. The FE model of the cask structure and the puncture bar is described. At the beginning a coarse mesh was created. Then this mesh was refined in two steps. In each step the size of the elements was bisected. The deformation of the mesh and the stresses were evaluated dependent on the mesh size. Finally, the results were extrapolated to an infinite fine mesh or the continuous body, respectively. The uncertainty of the numerical solution due to the discretisation of the continuous problem is given. A safety factor is discussed to account for the uncertainty.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.