9
Views
0
CrossRef citations to date
0
Altmetric
Bodycote Prize: Best Undergraduate Paper

Micromechanical testing of stress corrosion cracking

&
Pages 70-73 | Published online: 29 Nov 2013
 

Abstract

It is known that grain boundaries with differing chemistry, misorientation and structure have varying susceptibility to stress-corrosion cracking (SCC). However, up till now it has not been possible to obtain mechanical property data on individual grain boundaries as they fail under SCC. A novel method of using focused-ion beam machining to manufacture test specimens containing single grain boundaries, combined with loading in a nano-indenter, allows threshold stress levels and crack growth rates in 304 stainless steel to be directly measured. This technique opens up a new field in being able to validate atomistic scale and dislocation models of intergranular SCC. Combining this information with recent advances in microcharacterisastion, modelling and thermomechanical treatment engineering promises to provide a more complete understanding of inter-granular SCC failure and a better approach to reducing SCC susceptibility and predicting component lifetimes.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.