71
Views
1
CrossRef citations to date
0
Altmetric
Mechanical Performance of Welds - Original Article

Evaluation of hot cracking in AZ91E and AE42 magnesium alloys

, &
Pages 346-355 | Received 26 Oct 2011, Accepted 15 Feb 2012, Published online: 22 Nov 2013
 

Abstract

In this study, the hot cracking susceptibility of AZ91E and AE42 magnesium alloys was assessed using the moving torch Varestraint test method. Plates of 3 mm thickness were sliced from AZ91E and AE42 ingots and subsequently tested. Quantitative cracking data in terms of maximum crack length was used for evaluating the cracking susceptibility. Scanning electron microscopy (SEM) was carried out and the results suggest that AE42 showed a higher resistance to hot cracking in comparison to the AZ91E alloy. This was attributed to the difference in microstructure between the two alloys. In the fusion zone and heat affected zone of AE42, the brittle needle-like Al11RE3 phase was seen to decompose to the more ductile particle-like Al2RE phase, thereby increasing the alloy’s resistance to hot cracking. In contrast, SEM fractography revealed that brittle Al6Mn and Mg17Al12 intermetallic particles segregated to grain boundaries and triggered hot cracking in AZ91E.

Dans cette étude, on a évalué la susceptibilité à la fissuration à chaud des alliages de magnésium AZ91E et AE42 en utilisant la méthode d’essai de Varestraint du chalumeau en mouvement. Á partir de lingots d’AZ91E et d’AE42, on a coupé des tôles de 3 mm dépaisseur, que l’on a ensuite évaluées. On a utilisé des données quantitatives de fissuration en termes de longueur maximale de fissure pour évaluer la susceptibilité à la fissuration. On a effectué de la microscopie électronique à balayage (SEM) et les résultats suggérent que l’AE42 montre une résistance plus élevée à la fissuration à chaud lorsque comparé à l’alliage AZ91E. Ceci était attribué à la différence de microstructure entre les deux alliages. Dans la zone de fusion et la zone affectée par la chaleur de l’AE42, on a vu que la phase fragile Al11RE3 en forme d’aiguille se décomposait en phase plus ductile Al2RE en forme de particules, augmentant ainsi la résistance de l’alliage à la fissuration à chaud. Par contraste, la fractographie par SEM révélait que les particules intermétalliques fragiles d’Al6Mn et de Mg17Al12 étaient ségréguées dans les joints de grain et déclenchaient la fissuration à chaud de l’AZ91E.

The authors would like to thank Mr Giuseppe Marziano of Haley Industries for supply of material. Further, one of the authors (F. D’Elia) is grateful to Natural Sciences and Engineering Research Council of Canada (NSERC) for the Canada Graduate Scholarship (CGS). The authors are also grateful to Mr Suriyakumar of the Department of Metallurgical and Materials Engineering at IIT-Madras for help with the Varestraint experiments. The authors would also like to thank Mr Alan Machin and the members of the Centre for Near-net-shape Processing of Materials at Ryerson University for technical assistance. Last, the authors are thankful to the Ryerson University Office of International Affairs for the International Conference and Research Support Fund (ICRSF), which enabled this collaborative work between Ryerson University and IIT-Madras.

Notes

This paper is part of a special issue on Advances in High Temperature Joining of Materials

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.