Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 37, 1998 - Issue 2
40
Views
4
CrossRef citations to date
0
Altmetric
Articles

High Temperature Mechanical and Microstructural Behavior of A356/15 vol% SiCp and A356 Alloy

Pages 125-139 | Published online: 18 Jul 2013
 

Abstract

A metal-matrix composite (MMC, 15 vol% SiCp/A356 Al) and its matrix alloy were subjected to hot torsion over the range 300–540°C and 0.1–5.0 S−1. Flow stresses of the A356 MMC were found to be much higher than A356 alloy at low temperatures but the difference was quite small at higher temperatures. Flow stresses were found to depend on the strain rate through a sinh function and on temperature through an Arrhenius term with activation energies of 263 kJ/mol for the composite and 161 kJ/mol for the matrix; the increased value for the composite suggests that the SiC particles cause the matrix to undergo additional strain hardening. The substructures in both materials increase in cell size and decrease in internal and wall density, as temperature T rises and strain rate e falls; the composite shows much greater and less uniform dislocation density to which the strengths of the two materials are related. Dynamic recovery seems to be predominant in A356; however, dynamic recrystallization likely nucleates in the vicinity of silicon carbide particles in 15 vol% SiCp/A356 Al. Ductility of the composite, about 25% below that of the alloy, rose by a factor of 4 between 400 and 500°C to become higher than many wrought alloy composites. The low ductility of A356 was shown to result from linking up of the cracks nucleated at coarse Si particles, whereas linkage of the decohesion voids at the SiC was associated with more plastic flow in the matrix which had much finer Si particles than the bulk alloy. © 1998 Canadian Institute of Mining and Metallurgy. Published by Elsevier Science Ltd. All rights reserved.

Résumé

On a soumis le composité à matrice metallique (CMM, 15 vol% SiCp/A356 Al) et l'alliage de sa matrice à une torsion à haute température entre 300 et 540°C et entre 0.1 et 5.0 S−1. L'écoulement plastique du CMM A356 était beaucoup plus élevé que pour l'alliagé A356, à basse temperature, mais la difference etait plutot petite aux temperatures plus élevées. L'écoulement plastique dependait du taux de déformation par l'intermediaire d'une fonction sinh ainsi que de la température par l'intermediaire d'un terme d' Arrhenius, avec des energies d'activation de 263 kJ/mol pour le composite et de 161 kJ/mol pour la matrice; la valeur plus élevée pour le composite suggeré que les particules de SiC forcent la matrice à subir en plus un durcissement par ecrouissage. La taille de cellule des sous-structures des deux matériaux a augmente et la densite interne et des parois a diminue à mesure que la température s'eleviat et que la vitesse de deformation, se diminuait; le composite montre une densite de dislocation beaucoup plus élevée et beaucoup moins uniforme. La resistance des deux materiaux est reliee à densite des dislocation. La restauration dynamique semble predominer chez A356; cependant, des noyaux se forment probablement par recristallisation dynamique dans le voisinage des particules de carbure de silicium chez le 15 vol% SiCp/A356 Al. La ductilite du composite, environ 25% au-dessous de celle de l'alliage, s'est elevee par un facteur de 4 entre 400 et 500°C, surpassant ainsi celle de plusieurs composites des alliage corroyes. La faible ductilite de A356 resultait de la liaison des criques nucléees aux grosses particules de Si, alors que la liaison des lacunes de decohesion pres du SiC était associee avec un écoulement plus plastique dans la matrice, qui avait des particules de Si beaucoup plus fines qu'au coeur de l'alliage. © 1998 Canadian Institute of Mining and Metallurgy. Published by Elsevier Science Ltd. All rights reserved.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.