Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 48, 2009 - Issue 3
66
Views
9
CrossRef citations to date
0
Altmetric
Articles

Microstructural Design of Multiphase Advanced High Strength Steels

Pages 237-245 | Published online: 18 Jul 2013
 

Abstract

The properties of multiphase (MP) Advanced High Strength Steels (DP, TRIP, TWIP) are controlled by dispersed non-ferritic phases (NFP), which can be quenched martensite, deformation-induced martensite, retained austenite or twinned austenite. The yield strength, work hardening and ductility of these steels are determined by the volume fraction, carbon content, scale and spatial distribution of the NFP. This paper summarizes recently published results on the effects of microstructure on the tensile properties of DP and TRIP steels and discusses these observations in terms of micromechanisms of plastic yielding, work hardening and fracture. For DP steels, all three properties are enhanced by developing a fine, uniform distribution of NFP grains. For TRIP steels, the volume fraction of hard NFP increases continuously with strain and the tensile properties are strongly influenced by the rate of austenite transformation (RA stability). RA stability increases with increasing carbon content, decreasing dimensions of RAislands and with increasing strength of the surrounding phase. An optimum combination of RA transformation rate and high strength/hardening is obtained with a TRIP microstructure comprising intercritical ferrite grains + granular bainite.

The properties of multiphase (MP) Advanced High Strength Steels (DP, TRIP, TWIP) are controlled by dispersed non-ferritic phases (NFP), which can be quenched martensite, deformation-induced martensite, retained austenite or twinned austenite. The yield strength, work hardening and ductility of these steels are determined by the volume fraction, carbon content, scale and spatial distribution of the NFP. This paper summarizes recently published results on the effects of microstructure on the tensile properties of DP and TRIP steels and discusses these observations in terms of micromechanisms of plastic yielding, work hardening and fracture. For DP steels, all three properties are enhanced by developing a fine, uniform distribution of NFP grains. For TRIP steels, the volume fraction of hard NFP increases continuously with strain and the tensile properties are strongly influenced by the rate of austenite transformation (RA stability). RA stability increases with increasing carbon content, decreasing dimensions of RAislands and with increasing strength of the surrounding phase. An optimum combination of RA transformation rate and high strength/hardening is obtained with a TRIP microstructure comprising intercritical ferrite grains + granular bainite.

Les propriétés des aciers avancés à plusieurs phases (MP), à haute résistance (DP, TRIP, TWIP), sont contrôlées par des phases dispersées non-ferritiques (NFP), qui peuvent être de la martensite trempée, de la martensite induite par déformation, de l'austénite résiduelle ou de l'austénite de maclage. La limite d'élasticité, l'écrouissage et la ductilité de ces aciers sont déterminés par la fraction volumique, la teneur en carbone, l'échelle, et la distribution spatiale des NFP. Cet article résume les résultats publiés récemment sur les effets de la microstructure sur les propriétés de résistance des aciers DP et TRIP et discute ces observations par rapport aux micro-mécanismes d'écoulement plastique, d'écrouissage et de rupture. Chez les aciers DP, les trois propriétés sont améliorées par le développement d'une distribution fine et uniforme de grains NFP. Chez les aciers TRIP, la fraction volumique de NFP dures augmente continuellement avec la déformation et les propriétés de résistance sont fortement influencées par la vitesse de transformation de l'austénite (stabilité de la RA). La stabilité de la RA augmente avec l'augmentation de la teneur en carbone, les dimensions décroissantes des îles de RA et avec une augmentation de la résistance de la phase environnante. On obtient une combinaison optimale de la vitesse de transformation de la RA et de la résistance élevée/durcissement avec une microstructure TRIP comprenant des grains intercritiques de ferrite + de la bainite granulaire.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.