11
Views
3
CrossRef citations to date
0
Altmetric
Articles

Microstructural study of aluminide surface coatings on single crystal nickel base superalloy substrates

Pages 673-678 | Published online: 18 Jul 2013
 

Abstract

Aluminide diffusion coatings are frequently employed to enhance the oxidation resistance of nickel base superalloys. However, there is a concern that the presence of an aluminide coating could influence the properties of the coated superalloy, especially in respect of fatigue behaviour. To understand the nature of the effects of surface coatings on the fatigue properties of superalloys, an understanding of microstructural development within both the coating and the coating/substrate interfacial zone during high temperature fatigue testing is necessary. This paper is concerned with microstructural changes in aluminide diffusion coatings on single crystal γ′ strengthened superalloy substrates during the course of high temperature fatigue testing. The ‘edge on’ transmission electron microscopy technique is employed to study cross-sections of two stage (aluminisation plus diffusion treatment) coated superalloy samples. The paper examines the degradation of the coating produced by phase transformations induced by loss of aluminium from the coating and/or aging of the coating. Aluminium removal both by interdiffusion with the substrate and by oxidation of the coating surface is considered. Microstructural development in the portion of the substrate influenced by interdiffusion with the coating is also discussed.

MST/1694

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.