20
Views
6
CrossRef citations to date
0
Altmetric
Articles

Characterisation of two Al–Fe based high temperature alloy powders

Pages 709-715 | Published online: 18 Jul 2013
 

Abstract

Aluminium alloys containing additions of iron and cerium are among the alloys being developed as potential replacements for titanium based alloys for moderately high temperature applications. Development of these alloys is possible using rapid solidification technology, which results in a very fine distribution of dispersoids in the aluminium matrix. The microstructures of two rapidly solidified high temperature alloy powders of composition (wt-%) Al–6·7Fe–5·9Ce (alloy A) and Al–6·2Fe–5·9Ce–1·63Si (alloy B) have been characterised using transmission electron microscopy and the results are explained on the basis of some of the major solidification parameters, such as nucleation undercooling and recalescence. It was observed that most of the powder particles in the +10 to −20 μm size range contained both microcellular and cellular regions, which could be explained in terms of an initial large undercooling followed by recalescence. The decomposition of the powder microstructure after exposing the powders to temperatures of 350, 420, and 500°C for 1 h was investigated using transmission electron microscopy. This work was complemented by phase identification studies using X-ray diffraction. The equilibrium precipitates Al13Fe4, Al8Fe2Si, and Al3FeSi were detected in the powder microstructure of alloy B, whereas Al13Fe4 precipitates were detected in alloy A after high temperature exposure (500°C).

MST/1571

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.