20
Views
11
CrossRef citations to date
0
Altmetric
Articles

Weldability and properties of martensitic/austenitic stainless steel joints

Pages 823-829 | Published online: 19 Jul 2013
 

Abstract

A series of studies has been carried out to examine the weldability and properties of dissimilar steel joints using martensitic and austenitic stainless steels F6NM (OCr13Ni4Mo) and AISI 347, respectively. This type of joint requires good mechanical properties, corrosion resistance, and a stable magnetic permeability in addition to a good weldability. Weldability tests include weld thermal simulation of the martensitic steel to investigate the influence of weld thermal cycles and post-weld heat treatment (PWHT) on the microstructure and mechanical properties of the heat affected zone (HAZ); implant testing to examine the tendency for cold cracking of martensitic steel; and rigid restraint testing to determine hot crack susceptibility of the multipass dissimilar steel joints. The simulation results indicated that the toughness of the martensitic steel HAZ did not change significantly after the weld thermal cycles. The implant test results indicated that welds produced using nickel based filler show no tendency for cold cracking, whereas welds produced using martensitic or ferritic filler show such a tendency. Based on the weldability tests, a welding procedure (tungsten inert gas welding for root passes with HNiCrMo-2B wire followed by manual metal arc welding using ENiCrFe-3B coated electrode) was developed and a PWHT at 600°C for 2 h was recommended. Joints produced using the developed welding procedure are not susceptible to hot and cold cracking. After PWHT the joints exhibit both satisfactory mechanical properties and stress corrosion cracking resistance.

MST/1955

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.