11
Views
0
CrossRef citations to date
0
Altmetric
Articles

Microstructure and mechanical properties of two ultrahigh boron steels

Pages 112-117 | Published online: 19 Jul 2013
 

Abstract

An investigation has been made of the tensile behaviour between 20 and 600°C of two ultrahigh boron steels (Fe–2·2B and Fe–4·9B), consolidated by hot isostatic pressing at temperatures ranging from 700 to 1100°C. Tensile tests showed plastic deformation only in the Fe–2·2B alloy. A decrease in yield and ultimate tensile stresses occurred when the consolidation temperature was increased. This was accompanied by an increase in the elongation to failure. This alloy satisfies the Hall–Petch relation for all testing temperatures. The slope of the yield stress versus d−1/2 curve (d is grain size) decreases as the temperature increases, indicating that the mechanism controlling plastic deformation becomes independent of grain size at high testing temperatures. The fracture mode observed was brittle at room temperature and ductile, shown by the presence of dimples, at temperatures above 400°C.

MST/2050

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.