10
Views
4
CrossRef citations to date
0
Altmetric
Research Papers

THE FORMATION OF URANIUM AND OF BERYLLIUM ALLOYS BY THE SOLID-STATE SINTERING OF MIXED ELEMENTAL POWDERS

&
Pages 45-63 | Published online: 10 Nov 2014
 

Abstract

Large volume expansions accompany the formation of binary alloys of beryllium with uranium, thorium, iron, copper, zirconium, titanium, and vanadium, and of uranium with aluminium, during the sintering of the mixed, cold-compacted elemental powders. No expansion was detected during the sintering of binary mixtures of beryllium with aluminium, silicon, and magnesium, or mixtures of uranium with zirconium, molybdenum, iron, nickel, manganese, and chromium.

When it occurs, expansion is anisotropic, being greatest in the direction of compacting; the degree of anisotropy varies with the constituents and the composition of the alloys. In systems undergoing expansion, the volume expansion/composition graphs exhibit maxima. For a given system the magnitude of the maximum is a function of the shape of compact, the particle size of the powders, and the sintering time and temperature; the composition at which the maximum occurs is sensibly unaffected by these latter variables.

These experimental observations, together with those of other investigators, can be satisfactorily interpreted on the hypothesis that volume expansion is due to the formation of diffusional porosity during sintering.

Notes

* Manuscript received 2 January 1958; in revised form 16 December 1958.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.