18
Views
2
CrossRef citations to date
0
Altmetric
Research Papers

THE MEASUREMENT AND FORM OF POROSITY IN THE LOOSE SINTERING OF COPPER COMPACTS

&
Pages 1-19 | Published online: 05 Nov 2014
 

Abstract

Changes in surface area of specimens of loose-sintered –300-mesh spherical copper powder, measured by the BET gas-adsorption technique, are given for sintering temperatures of 700,800,900, and 1000°C under furnace atmospheres of hydrogen and argon, for times of 0–24 h. Porosity determinations, using a xylene-impregnation technique, show that the porosity is composed entirely of interconnected pores at 700, 800, and 900°C, connected porosity occurring only after 14 h sintering at 1000°C. Determinations of pore-size distribution are also given, measured by a technique based on a “capillary rise of a liquid in a porous material”. Results indicate that for specimens sintered under a hydrogen atmosphere, an overall increase in pore size occurs, whereas for specimens sintered at 800 and 900°C under an argon atmosphere the size of the majority of the pores remains constant, whilst a small percentage of extremely large pores is developed. Permeability coefficients calculated from surface-area and pore-size distribution data are compared with the experimental values.

Notes

* Manuscript received 11 August 1964.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.