17
Views
14
CrossRef citations to date
0
Altmetric
Symposium on “Quality Control and Production Processing in Powder-Metallurgy Products”

A STUDY OF THE FACTORS CONTROLLING GRAIN SIZE IN SINTERED HARD-METAL

&
Pages 185-198 | Published online: 07 Nov 2014
 

Abstract

Previous experimental work concerning the grain growth observed during the sintering of tungsten carbide–cobalt alloys is reviewed. Particle-sizing methods suitable for the examination of hard-metal powders are described, and techniques for the evaluation of the carbide grain size in the sintered compacts are discussed.

By using a Model A Coulter Counter to examine the size distribution of the carbide grains (obtained from the milled hard-metal powders by dissolution of the cobalt with hydrochloric acid), and by counting techniques on electron photomicrographs of carbon replicas of the sintered compacts, it has been established that the increase in grain size during sintering is quantitatively related to the carbon content of the material after pre-heating. The results presented indicate that the cobalt content exerts little influence on the average grain size of the sintered structures A cobalt content >10% by weight is shown to exert a strong damping effect on the rate of comminution during milling.

The linear relationships between the specific surface area of the carbide grains in milled powders (obtained using a Perkin–Elmer Sorptometer) and the specific surface of the carbide phase in sintered compacts are given. The influence of sintering temperature and time on average grain size and contiguity in a commercial alloy is shown. Some preliminary work indicates that the morphologies of the initial carbide powders may be important factors with respect to the grain size of sintered hard-metal.

Notes

* Manuscript received 15 June 1970; in revised form 3 September 1970. Contribution to a Symposium on “Quality Control and Production Processing in Powder-Metallurgy Products” held in Eastbourne on 17 and 18 November 1970.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.