16
Views
24
CrossRef citations to date
0
Altmetric
Articles

Mechanisms of Grain Growth in Ti(C,N)–Ni Sintered Alloys

Pages 62-68 | Published online: 19 Jul 2013
 

Abstract

In order to improve the mechanical properties of cemented carbides, Ti(C,N)–Ni–Mo alloys, in which carbon in the titanium carbide is replaced by nitrogen, are of potential interest from the viewpoint of grain size control. Since grain size control by nitrogen was also observed in Ti(C,N)–Ni alloys containing no molybdenum, the effect of nitrogen on grain growth of Ti(C,N)–Ni alloys was investigated by comparing TiC–Ni and TiN–Ni alloys. The grain growth rate of Ti(C,N)–Ni alloys showed a minimum value at the carbon content C/C+N = 0·5. From the results of chemical and grain size analyses, it is considered that the growth rate depends on the solubility of Ti(C,N) in the nickel solid solution and the degree of coalescence because the solubility decreases with decreasing carbon content. With nitride, the amount of liquid increases by denitrification of TiN, owing to the formation of the nickel solid solution or TiNi3 phases, and growth of TiN grains by Ostwald ripening is observed. The apparent activation energy for the growth of TiC and TiN grains is calculated to be ∼4·4×105 and 1·9 × 105 J mol−1 respectively. PM/0201

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.