1,140
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Resting energy expenditure in elite athletes: development of new predictive equations based on anthropometric variables and bioelectrical impedance analysis derived phase angle

ORCID Icon, , , , &
 

Abstract

Background

An accurate estimation of athletes’ energy needs is crucial in diet planning to improve sport performance and to maintain an appropriate body composition. This study aimed to develop and validate in elite athletes new equations for estimating resting energy expenditure (REE) based on anthropometric parameters as well as bioimpedance analysis (BIA)-derived raw variables and to validate the accuracy of selected predictive equations.

Methods

Adult elite athletes aged 18–40 yrs were studied. Anthropometry, indirect calorimetry and BIA were performed in all subjects. The new predictive equations were generated using different regression models. The accuracy of the new equations was assessed at the group level (bias) and at the individual level (precision accuracy), and then compared with the one of five equations used in the general population or three athletes-specific formulas.

Results

One-hundred and twenty-six male athletes (age 26.9 ± 9.1 yrs; weight 71.3 ± 10.9 kg; BMI 22.8 ± 2.7 kg/m2) from different sport specialties were randomly assigned to the calibration (n = 75) or validation group (n = 51). REE was directly correlated with individual characteristics, except for age, and raw BIA variables. Most of the equations from the literature were reasonably accurate at the population level (bias within ±5%). The new equations showed a mean bias −0.3% (Eq. A based on anthropometric parameters) and −0.6% (Eq. B based on BIA-derived raw variables). Precision accuracy (individual predicted-measured differences within ±5%) was ~75% in six out of eight of the selected equations and even higher for Eq. A (82.4%) and Eq. B (92.2%).

Conclusion

In elite athletes, BIA-derived phase angle is a significant predictor of REE. The new equations have a very good prediction accuracy at both group and individual levels. The use of phase angle as predictor of REE requires further research with respect to different sport specialties, training programs and training level.

Maurizio Marra and Olivia Di Vincenzo contributed equally to this work.

Maurizio Marra and Olivia Di Vincenzo contributed equally to this work.

Acknowledgements

Not applicable.

Authors’ contributions

MM and ODV formulated the study concept and design. MM, ODV and RS acquired data used in the study and assisted in the interpretation of this data. MM, LS and ODV interpreted data, drafted the manuscript, and completed the data analysis and interpretation. IC, RS and DM helped advise the direction of the manuscript and made substantial revisions. Each author has read and approved the final manuscript prior to submission.

Funding

Not applicable.

Availability of data and materials

All data pertaining to the conclusions of the study are found within the article. The corresponding data set used is available under reasonable requests.

Declarations

Ethics approval and consent to participate

This study was conducted in accordance with the Declaration of Helsinki and was approved by the Federico II University Ethical Committee.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.