289
Views
18
CrossRef citations to date
0
Altmetric
Applications and Case Studies

Estimating Individual-Level Risk in Spatial Epidemiology Using Spatially Aggregated Information on the Population at Risk

, , , &
Pages 1394-1402 | Received 01 May 2009, Published online: 01 Jan 2012
 

Abstract

We propose a novel alternative to case-control sampling for the estimation of individual-level risk in spatial epidemiology. Our approach uses weighted estimating equations to estimate regression parameters in the intensity function of an inhomogeneous spatial point process, when information on risk-factors is available at the individual level for cases, but only at a spatially aggregated level for the population at risk. We develop data-driven methods to select the weights used in the estimating equations and show through simulation that the choice of weights can have a major impact on efficiency of estimation. We develop a formal test to detect non-Poisson behavior in the underlying point process and assess the performance of the test using simulations of Poisson and Poisson cluster point processes. We apply our methods to data on the spatial distribution of childhood meningococcal disease cases in Merseyside, U.K. between 1981 and 2007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.