2,023
Views
159
CrossRef citations to date
0
Altmetric
Mining High-Dimensional Data

Penalized Functional Regression

, , , &
Pages 830-851 | Received 01 Jan 2010, Published online: 24 Jan 2012
 

Abstract

We develop fast fitting methods for generalized functional linear models. The functional predictor is projected onto a large number of smooth eigenvectors and the coefficient function is estimated using penalized spline regression; confidence intervals based on the mixed model framework are obtained. Our method can be applied to many functional data designs including functions measured with and without error, sparsely or densely sampled. The methods also extend to the case of multiple functional predictors or functional predictors with a natural multilevel structure. The approach can be implemented using standard mixed effects software and is computationally fast. The methodology is motivated by a study of white-matter demyelination via diffusion tensor imaging (DTI). The aim of this study is to analyze differences between various cerebral white-matter tract property measurements of multiple sclerosis (MS) patients and controls. While the statistical developments proposed here were motivated by the DTI study, the methodology is designed and presented in generality and is applicable to many other areas of scientific research. An online appendix provides R implementations of all simulations.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.