97
Views
53
CrossRef citations to date
0
Altmetric
Original Articles

Low Doses of Diallyl Disulfide, a Compound Derived From Garlic, Increase Tissue Activities of Quinone Reductase and Glutathione Transferase in the Gastrointestinal Tract of the Rat

Pages 42-48 | Published online: 18 Nov 2009
 

Abstract

Diallyl disulfide (DADS), a substance that is formed from the organosulfur compounds present in garlic, is known to increase tissue activities of the phase II detoxification enzymes quinone reductase (QR) and glutathione transferase (GT) in animals. In previous experiments, however, high doses of DADS were employed and only a limited range of tissues were examined. In the present studies, increased activities of QR and GT were recorded in the forestomach, glandular stomach, duodenum, jejunum, ileum, cecum, colon, liver, kidneys, spleen, heart, lungs, and urinary bladder of rats given DADS over a wide range of dose levels. Large variations in response were recorded among the different organs, with forestomach, duodenum, and jejunum being the most sensitive to enzyme induction by DADS. In these organs, significant increases in QR activity were observed at a dose of only 0.3 mg/kg/day. Such a dose level is close to that which may be achieved through human consumption of garlic, suggesting that induction of phase II enzymes may contribute to the protection that is afforded by this vegetable against cancer of the gastrointestinal tract in humans.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.