54
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

Increased Cellular Carotenoid Levels Reduce the Persistence of DNA Single-Strand Breaks After Oxidative Challenge

Pages 202-213 | Published online: 18 Nov 2009
 

Abstract

Dietary antioxidants, such as the carotenoids, may protect DNA from oxidative damage. This has been proposed to explain the epidemiological association between higher consumption of fruits and vegetables, which are rich in antioxidants, and lower incidence of cancer. However, this remains to be demonstrated conclusively. The effects of carotenoid supplementation on 1) baseline DNA damage, 2) susceptibility of cellular DNA to oxidative attack, and 3) DNA repair were measured in the human lymphocyte cell line Molt-17. Baseline DNA damage, susceptibility to oxidant attack (100 μmol/l H2O2 for 5 min at 4°C), and disappearance of DNA single-strand breaks (SSB) after oxidative challenge were monitored by single-cell gel electrophoresis. DNA repair patch synthesis activity in cell extracts was determined using assays that measure nucleotide incorporation during repair of oxidative lesions in template DNA. Unlike single-cell gel electrophoresis, the parameters measured with these assays are not dependent on strand break religation. There was no evidence that β-carotene, lutein, or β-cryptoxanthin supplementation protected cellular DNA from oxidation under basal conditions or after oxidative challenge. However, only carotenoid-supplemented cells exhibited a significant decrease in numbers of SSB over a 2-h period after treatment with H2O2. Carotenoid supplementation did not provoke any detectable change in repair patch synthesis activity. We conclude that supplementation with carotenoids at 8 μmol/l does not provide significant antioxidant protection for DNA in Molt-17 lymphocytes but may enhance recovery of cells from oxidative challenge, as measured by loss of SSB. We argue that these data are most consistent with carotenoids acting to enhance DNA strand break repair.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.