95
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Sodium Butyrate Inhibits Cell Growth and Stimulates p21WAF1/CIP1 Protein in Human Colonic Adenocarcinoma Cells Independently of p53 Status

Pages 202-211 | Published online: 18 Nov 2009
 

Abstract

Butyric acid, one of the short-chain fatty acids produced by microbial fermentation in the colon, exhibits antiproliferative activities in various cancer cell lines. The initial objective of the study was to assess whether the effect of sodium butyrate (NaB) on cell growth differed by p53 status of the cells. Four human colorectal adenocarcinoma cell lines were used: HT29 (p53 point mutation), Caco2 (p53 truncation), LS513 (p53 wild type), and Lovo (p53 wild type). NaB significantly inhibited cell growth in all four cell lines. NaB arrested HT29 and LS513 cells in G0/G1 and Caco2 and Lovo in G2-phase. A second objective was to determine whether NaB similarly affected the cyclin-dependent kinase inhibitor, p21WAF1/CIP1. In all cell lines, p21 mRNA levels were immediately elevated after NaBexposure, and p21 protein levels were increased within 6 h. NaB increased p21 promoter activity in both Caco2 and Lovo, suggesting p53 independence. NaB did not influence p21 mRNA stability. Although three DNase I hypersensitivity sites were identified in the region of the p21 gene, induction of p21mRNAbyNaBwas not accompanied by relaxation of the chromatin in the region of the p21 gene.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.