143
Views
37
CrossRef citations to date
0
Altmetric
Original Articles

Zyflamend®, a Unique Herbal Preparation With Nonselective OX Inhibitory Activity, Induces Apoptosis of Prostate Cancer Cells That Lack COX-2 Expression

Pages 202-212 | Published online: 18 Nov 2009
 

Abstract

Abstract: Cyclooxygenase (COX) inhibitors have suppressive effects on several types of cancer cells including prostate cancer. In this study, we considered the potential COX-inhibitory activity of a unique anti-inflammatory herbal preparation (Zyflamend®; New Chapter, Inc., Brattleboro, VT) and analyzed its effects on the human prostate cancer cell line LNCaP. COX inhibitory activity of Zyflamend was determined by a spectrophotometric-based assay using purified ovine COX-1 and COX-2 enzymes. Effects of Zyflamend on LNCaP cell growth and apoptosis in vitro were assessed by cell counting, Western blot detection of poly ADP-ribose polymerase (PARP) cleavage, and measurement of caspase-3 activity in treated and control cell extracts. Western blotting techniques were conducted to determine the effects of this herbal preparation on the expression of the cell signaling proteins, p21, androgen receptor (AR), phospho-protein kinase C (pPKC)α/β, and phospho (p)Stat3. The phospohorylation status of several signal transduction phosphoproteins was profiled using a high-throughput phosphoprotein screening assay in treated cells and compared to controls. Zyflamend dramatically decreased COX-1 and COX-2 enzymatic activity. Elevated p21 expression coincided with attenuated cell growth following treatment of LNCaP cells with Zyflamend. PARP cleavage fragments were evident, and caspase-3 activity was upregulated over the control indicating the ability of Zyflamend to induce apoptosis of these cells. Androgen receptor expression levels declined by 40%, and decreases were observed in the active forms of Stat3 and PKCα/β in Zyflamend-treated LNCaP cells. Zyflamend inhibited both COX-1 and COX-2 enzymatic activities, suppressed cell growth, and induced apoptosis in LNCaP cells. However, our data suggests that the effects are likely due to COX-independent mechanisms potentially involving enhanced expression of p21 and reduced expression of AR, pStat3, and pPKCα/β.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.